Digital communications systems always represent a collection of design trade-offs. Maximizing one characteristic of a system may impair others, and various communications services may choose to optimize different performance parameters based on the intersection of these design decisions with the physical characteristics of the communications medium.
I recently used Starlink on a cruise along the coast of Northwest Africa, and I'll summarize my experience below, but first let me explain why I put some in the title of this post. I posted the following request on the Reddit Cruise group: "What has been your experience of Starlink Internet service on Seabourn or other cruise lines? How was latency? Do video chats work smoothly? Games? etc."
In his January 12 SpaceX update, Elon Musk said the biggest goal for Starlink from a technical standpoint is to get the mean latency below 20 ms. He expanded by saying that given the speed of light, 8 ms is the absolute minimum latency for a satellite at 550 km. He believes they can optimize terrestrial and inter-satellite links, and minimize queueing delays and dropped packets, to recude the the rest of the time to below 10 ms.
As was the case in the US during World War II, civilian volunteers are making important contributions to the Ukrainian war effort. On February 8, 2022, the first truckload of Starlink terminals arrived in Kyiv. A week later they were being used. By April 2022, there were 5,000 terminals in Ukraine, and 42,000 as of April 2023. (At this point, SpaceX and Ukraine have gone silent. Neither ChatGPT4, Gemini, Copilot, Perplexity, nor I could not find a current terminal count).
In 2019, I wrote that Amazon would be a formidable satellite-ISP competitor. I still think so, but I didn't expect it would be over four years until they launched the first test satellites. In the meantime, SpaceX has put over 5,000 satellites in orbit and has over two million Starlink customers. Amazon has permission to launch 3,236 satellites.
Ookla recently published a blog that looks at the speed performance of satellite broadband, focusing mostly on Starlink. I haven't looked at this broadband sector for a while and thought it was time for an update. Starlink has had a busy year. At the end of November, the company had 5,500 satellites in orbit, up from over 3,200 at the end of 2022. The first constellation is still slated to reach almost 12,000 satellites, and the company has tentative permission from the FCC to extend to 42,000.
For well over a decade, it was fairly easy to understand the trajectory of the broadband industry. In the residential market, cable companies snagged all the growth while telcos shrank as customers abandoned DSL. Other technologies like fiber or fixed wireless gained customers but were a blip on the national scale.
Section 706 of the Telecommunications Act of 1996 orders the FCC to "encourage the deployment on a reasonable and timely basis of advanced telecommunications capability to all Americans." On October 25, The FCC issued a notice of inquiry (NOI) into how well we are doing and invited comments. The NOI points out that COVID and the concomitant increase in the use of interactive applications has "made it clear that broadband is no longer a luxury...
SpaceX is equipping its new satellites with inter-satellite laser links (ISLLs). They now have over 8,000 optical terminals in orbit (3 per satellite) and they communicate at up to 100 Gbps. The other low-Earth orbit Internet service providers will follow SpaceX's lead.
Starlink recently launched a new webpage that advertises the future ability to deliver text, voice, and data to 4G cell phones via satellite. The texting service is supposed to be available in 2024, with voice and data coming in 2025. The service will require a user to have a view of the open sky.