You may recall a number of years ago when Google experimented with delivering broadband from balloons in an effort labeled Project Loon. The project was eventually dropped, but a remnant of the project has now resurfaced as Taara - broadband delivered terrestrially by lasers.
SpaceX is equipping its new satellites with inter-satellite laser links (ISLLs). They now have over 8,000 optical terminals in orbit (3 per satellite) and they communicate at up to 100 Gbps. The other low-Earth orbit Internet service providers will follow SpaceX's lead.
Starlink recently launched a new webpage that advertises the future ability to deliver text, voice, and data to 4G cell phones via satellite. The texting service is supposed to be available in 2024, with voice and data coming in 2025. The service will require a user to have a view of the open sky.
A recent invitation to participate in a webinar to discuss ICANN's Role in Satellite Internet Governance as an enabler of UN Sustainable Development Goal (SDG) 9 prompted me to consider this issue. As a legal scholar with expertise in telecommunications infrastructure, I had much to say and discuss about the new mega-constellation phenomenon and its potential role in achieving SDG9, which, for me, is a multifaceted and fascinating subject.
Starlink gets almost all of the satellite press in the U.S., which is fair since the company now serves many homes and RVs with broadband. The company currently has over 4,600 active satellites in orbit, and if it sticks with its original business plan, it will eventually have 30,000. But there are a few other satellite companies working in the broadband space that don't get the press.
At the end of August, the FCC gave final approval to the requirement that ISPs must provide broadband labels. The FCC had originally approved the broadband labels in November 2022 but then received three petitions to further modify the rules. The recent order makes a few minor changes to the original order but largely leaves the original broadband label rules intact.
In 2017, Telesat, an established Canadian geostationary satellite operator, announced a planned low-Earth orbit Internet service constellation. The plan called for 117 satellites with inter-satellite laser links in a mix of inclined and polar orbits, enabling global coverage.
A few years ago, there were a lot of predictions that we'd see broadband networks converting to quantum technology because of the enhanced security. As happens with many new technologies, quantum computing is advancing at a slower pace than the wild predictions that accompanied the launch of the new technology.
Astronomy & Astrophysics published a research paper recently that looked at "Unintended Electromagnetic Radiation from Starlink Satellites." The study was done in conjunction with the Low-Frequency Array (LOFAR) telescope in the Netherlands. The LOFAR telescope is a network of over forty radio antennas spread across the Netherlands, Germany, and the rest of Europe.
In an earlier post, I asked whether electronically steered antennas (ESAs) would replace parabolic antennas in satellite ground stations. I did some research and concluded that it is likely that they will. Next, I discussed the same question with ChatGPT and, while it made several false statements, it made a relevant point that I had overlooked. The relevant addition was positive, but the errors were troublesome, so I decided to try ChatGPT's competitor Google Bard.